

Resonant Switched Capacitor Converters for High-Density Power Delivery

Jason T. Stauth Assistant Professor Dartmouth College jason.stauth@dartmouth.edu

Motivation

Applications that demand: high density + efficiency
 Application Trends

Switched Capacitor Converters

- Growing interest as candidate for monolithic DC-DC
- + High energy density of Siintegrated capacitors (compared to inductors)
- + Higher device utilization FOM* compared to traditional DC-DC converter topologies
 - + Deep-trench capacitors & scalable CMOS processes
- + No Inductors
- *M. D. Seeman et. al, IEEE TPEL, 2008

Resonant Switched Capacitor Converters

Kesarwani et. al. , ISSCC, 2014

Similarities to SC Converters:

- Similar architectures (Ladder, Dickson, Series-Parallel, etc)
- Favorable device utilization FOMs
- Leverage high-density capacitors

Potential Advantages:

- Small magnetic component (few nH) resonates out reactive impedance (better capacitance utilization + soft switching)
- Improved trade-offs between switching (+bottom plate) loss and conduction loss

Resonant Operation

Nominal 2:1 Converter

Effective Resistance

- R_{EFF} models the effective output impedance of the converter
- SC in FSL: energy transfer is limited by ESR
- ReSC: Comparable minimum
 R_{EFF}, but at lower frequency
- Sub-harmonic operation for light load
- Burst mode even better^[1]

[1] Kesarwani & Stauth, <u>ISSCC '14</u> "Dynamic Off-Time Modulation (DOTM)"

Interleaving in ReSC

 3-phase → multiple order of magnitude improvement compared to 1-phase

When total die area is constrained:

- More bypass → lower ripple
- With interleaving can allocate more to CX → Major improvements

Limitations and Disadvantages

Need Inductive Component → Potential increase in ESR

Summary (limitations)

- Need magnetic component(s) (Design goal is low ESR in resonant loop)
- Need 'some' explicit bypass capacitance
- Practical limitations on interleaving (Inductor scaling considerations)

Limitations and Disadvantages

Nonetheless:

- Favorable operation with *very small* inductors
- Lower f_{SW} → can <u>reduce</u> ESR in capacitors and interconnect (parasitics we often don't talk about!)

Full analysis, optimization, and comparison is complicated: *Kesarwani & Stauth, <u>COMPEL 2013</u> *Kesarwani & Stauth, TPEL 2015 (coming) Major Opportunity & Potential Advantage: Efficient & Granular Variable Conversion Ratios

Example – Step Up/Down

Challenges & Benefits

- Requires hard switching on one transition
 - Possible diode conduction
 - Need fast control

Advantages:

- Potential for high efficiency above/below nominal operating point
- Feedback control & regulation

• Can be used to compensate the load line!

Other ReSC Topologies: Direct vs Indirect

2:1 ReSC

(Direct Topology)

 S_2

 V_{DD}

V_{OUT}

↓)I_{OUT}

C_{BP.1}

Lx

۹ √I

C_{BP.2}

Identical to 2:1 SC but with resonant flying impedance

Similar to 3-level buck converter*; but operates in resonant mode

¦S₁

*G.V. Pique, PESC '08

Direct/Indirect Comparison

Other Topologies (Higher Conversion Ratios): Ladder Architecture

Requires N-1 magnetic components

Simplest Abstraction: Resonate each flying capacitor in the circuit

Example: Photovoltaic Application

Sangwan et al, ECCE '14

Other Topologies: e.g. Series-Parallel, Dickson

*Lei, Pilawa, and May: COMPEL 2013

High-Density Power Delivery: 1st Gen mm-Scale Prototype

Die-attached air-core solenoid inductors (gold stud, solder reflow process)

Technology	0.18 µm CMOS
Тороlоду	2-phase ReSC
Conv Ratio	2:1
Vin	~4.5-6 V
Vout	~2-3 V
Frequency	~35 MHz
Cx	9 nF/phase
Сbр	11 nF x 2
Capacitor	MIM: 6.6 fF/um ²

Dynamic Off-time Modulation (DOTM or Burst Mode) for light load & regulation

Efficiency Measurements

Efficiency of 85.0 % @ 0.60 W/mm²

Comparison to Prior Work (ISSCC Tech Trends 2014)

Efficiency vs Peak Power

Future Prospects

Si-Microfabricated, High-frequency Magnetic Components

ReSC improves significantly with higher Cap Density and Low ESR Inductors!

References and Acknowledgements

National Science Foundation: ECCS 1309905 ECCS 1407725

Graduate Students: Kapil Kesarwani Chris Schaef

Thanks: Charlie Sullivan

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

- [1] Stauth, Seeman, & Kesarwani, *IEEE <u>ISSCC</u>* (2012).
- [2] Kesarwani & Stauth, *IEEE COMPEL*, (2012)
- [3] Stauth, Seeman, & Kesarwani, *IEEE* <u>JSSC</u> (2012).
- [4] Kesarwani, Schaef, Sullivan, & Stauth, *IEEE <u>APEC</u>* (2013).
- [5] Stauth, Seeman, & Kesarwani, *IEEE* <u>TPEL</u> (2013).
- [6] Kesarwani, Sangwan, & Stauth, IEEE <u>COMPEL</u>. 1–7 (2013).
- [7] Kesarwani, Sangwan, & Stauth, IEEE <u>ISSCC</u>86–88 (2014).
- [8] Sangwan, Kesarwani, & Stauth, IEEE ECCE (2014)
- [9] Schaef & Stauth, *IEEE JESTPE* (2014).